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Abstract

Zirconia is well-known for plenty of important morphologys with Zr coordination varying from

sixfold in the octagonal phase to eightfold in the cubic or tetragonal phase. The development

of empirical potentials to describe these zirconia morphologys is an important issue but a long-

standing challenge, which becomes a bottleneck for the theoretical investigation of large zirconia

structures. In contrast to the standard core-shell model, we develop a new potential for zirconia

through the combination of long-range Coulomb interaction and bond order Tersoff model. The

bond order characteristic of the Tersoff potential enables it to be well suited for the description

of these zirconia morphologys with different coordination numbers. In particular, the complex

monoclinic phase with two inequivalent oxygens, that is difficult to be described by most existing

empirical potentials, can be well captured by this newly developed potential. It is shown that

this potential can provide reasonable predictions for most static and dynamic properties of various

zirconia morphologys. Besides its clear physical essence, this potential is at least one order faster

than core-shell based potentials in the molecule dynamics simulation, as it discards the concept

of the ultralight shell that demands for an extremely small time step. We also provide potential

scripts for the widely used packages GULP and LAMMPS.

PACS numbers: 78.20.Bh, 63.22.-m, 62.25.-g

Keywords: Zirconia, ZrO2, Empirical Potential, Molecular Dynamics Simulation
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I. INTRODUCTION

Zirconia-based ceramics are important industrial materials of high-temperature stability

and high strength.1 The yttria-stabilized zirconia serves as the thermal barrier coating mate-

rial to protect substrate components from hot gases in turbines and engines.2–5 Zirconia can

be used as an oxygen sensor or high quality oxygen ion channels, while artificial diamonds

can be produced based on the zirconia.6

Due to its industrial and military importance, zirconia and zirconia-based materials have

attracted intense global research interest. Lots of research findings for the zirconia-based ma-

terials are first discovered by experiments rather than the theory. For instance, the successful

application of yttria-stabilize zirconia as thermal barrier coating material was achieved in

the experiment,2 while theoretical studies fall far behind the experimental achievements.

With the development of the computer speed, more and more ab initio calculations have

been performed to study various properties for the zirconia.7–13 Ab initio calculations are

of high accuracy, but they are also computationally expensive. Empirical potentials are

desiable for studying systems of hugh number of degrees of freedom.

As long as reliable empirical potentials are the foundation for theoretical researches,

significant efforts have been devoted to developing empirical potentials for zirconia. Zirconia

is an ionic oxide, so its interction is dominated by the Coulomb interaction. As a classic

treatment, the long-range attractive Coulomb interaction is ballanced by the short-range

Born-Mayer repulsive interaction,14 which origins in the Pauli repulsion from the overlap of

electron density.15 Several parameter sets for the Born-Mayer model are available for zirconia

in the existing literature.16–18

The Coulomb and Born-Mayer interactions together can provide a basic description for

some properties of cubic zirconia, but they can not describe the important tetragonal and

monoclinic phases. The stability of the tetragonal phase is closely related to the instan-

taneously polarization of ions. A standard approach to describe the polarizable ion is to

divide the ion into a pair of core and shell.19 The core-shell model has been parameterized

for zirconia in several works.20–22 The effect of polariable charges can also be considered

by introducing a phenomenological charge-dipole term.23 Besides, the instability of the cu-

bic phase and the resultant c-t transition can also be predicted by introducing additional

Born-Mayer interactions among oxygen ions.16
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The monoclinic phase is even more complicated with two inequivalent oxygen ions.1 It was

shown that the existence of two inequivalent oxygen ions originates in the charge redistri-

bution between oxygen ions in the zirconia.24 To correctly describe all zirconia morphologys

simultaneously, one needs to combine the Coulomb interaction, the Born-Mayer potential,

the core-shell model, and the charge redistribution effect.24

Some other empirical potentials are also available to describe the atomic interaction

within zirconia, including the tight-binding model,25 the reactive force field model,26 and

the neural network model.27

In contrast to the core-shell model, we are going to analyze the interaction by examing the

bond order properties of the zirconia. As mentioned by Smirnov et al,24 dioxides with larger

cations (Th, Ce, U) are stable in the fluoritelike lattices with eightfold cation coordination,

while dioxides with smaller cations (Pb, Sn, Ti, W) are stable in the structures with sixfold

cation coordination. Different from these dioxides, the coordination varies among different

zirconia morphologys. The lowest-energy state is the monoclinic phase with sevenfold cation

coordination. The cubic/tetragonal phase has eightfold cation coordination, while the oc-

tagonal phase has sixfold cation coordination. The energy order for these zirconia phases is

monoclinic < tetragonal < cubic < octagonal, which explicitly shows a strong correlation

between energy and the coordination.1 In other words, the configuration of zirconia depends

on the bond order of the Zr atom. Inspired by this bond order dependence, we believe that

the atomic interaction within zirconia may be described by bond order empirical potentials.

The Tersoff model is a widely used empirical potential that possesses an explicit bond order

dependence in its functional form.28 We thus propose to combine the Coulomb interaction

and the Tersoff potential to describe the atomic interaction for zirconia.

In this paper, we suggest to describe the atomic interaction within zirconia by the

Coulomb and Tersoff (CT) potential. The Tersoff potential captures different zirconia mor-

phologys in terms of the bond order of Zr atoms, and the traditional core shell conception is

avoided. As a consequence, the CT potential is at least one order faster than the standard

core-shell based empirical potentials, while a clear physical essence is maintained. By taking

advantage of the bond order property in the Tersoff potential, the CT potential is able to

predict correct energy order for various zirconia morphologys, and in particular with the

monoclinic phase as the lowest-energy morphology. The instability of the cubic zirconia is

also predicted by the CT potential. We apply the CT potential to systematically investigate
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FIG. 1: (Color online) Symmetric unit cells illustrate the atomic configuration for the (a) cubic,

(b) tetragonal, (c) monoclinic, and (d) octagonal ZrO2. The Zr-O bond length is also displayed.

The colorbar is with respective to the coordination of each atom. Two inequivalent oxygen atoms,

OI with 3 bonds and OII with 4 bonds, are clearly demonstrated for the monoclinic ZrO2 in (c).

a series of static and dynamic properties for different zirconia morphologys.

II. STRUCTURE

Lots of zirconia morphologys have been observed in the experiment or discussed

theoretically.1 The present work focuses on these four most studied zirconia morphologys

shown in Fig. 1, including the cubic, tetrogonal, monoclinic, and octagonal phases. In the

cubic zirconia, Zr atoms take the FCC lattice sites while oxygen atoms are in the tetrahe-

dral position. Each Zr atom is coordinated by eight oxygen atoms in a symmetric manner.

In the tetragonal zirconia, these eight oxygen atoms around the Zr atom are divided into

two groups and relatively shifted for ∆z along one principal axis, while the symmetric unit
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FIG. 2: The constraint between parameters of the repulsive Born-Mayer interaction. (a) The

constrain relationship between A and λ1. (b) The energy for the cubic and octagonal ZrO2 for

different sets of parameters (A, λ1) obeying the constraint.

cell is elongated along this principal axis. The monoclinic phase in Fig. 1 (c) has a more

complex configuration with a monoclinic lattice. The Zr atom has a sevenfold coordination.

There are two inequivalent oxygen atoms, one with threefold coordination while the other

with fourfold coordination. Fig. 1 (d) shows an octagonal phase, in which Zr atoms have

six coordination while oxygen atoms have threefold coordination. The octagonal phase is

not observed in the experiment, so this phase shall have higher energy than other zirconia

morphologys.
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III. POTENTIAL MODEL

A. Born-Mayer potential

The interaction within ZrO2 is usually described by the long-range attractive Coulomb

interaction and the short-range repulsive Born-Mayer interaction15

Vij =
QiQj

rij
+ Ae−λ1rij , (1)

where rij is the distance between atoms i and j. The first term is the Coulomb interaction

between charges Qi and Qj. The second term is the Born-Mayer interaction with two

parameters A and λ1. It has been shown that there is a constraint relation between these

two parameters,24 which can be obtained as follows. The force of the repulsive term is

F = Aλ1e
−λ1r. (2)

Request that the Zr-O bond length of r0 = 2.2 Å to be the same for cubic ZrO2 with different

sets of parameters A and λ1, so the force from the Coulomb interaction keeps unchanged.

As a result, the same force (F0) is obtained from the repulsive interaction with different sets

of parameters A and λ1. The following constraint relationship between A and λ1 can thus

be obtained

F0 = Aλ1e
−λ1r0 . (3)

This constraint relation is plotted in Fig. 2 (a).

For each set of parameters (A, λ1), the energy for the cubic and octagonal ZrO2 are

compared in Fig. 2 (b). It is reasonable to guarantee that the octagonal ZrO2 has higher

energy than the cubic ZrO2, as the octagonal ZrO2 is not observed in experimental samples.

A reasonable parameter set is λ1 = 3.05 Å, and A = 2023.6003 eV according to the constraint

relationship.

The Coulomb attractive interaction plus the Born-Mayer repulsive interaction captures

the fundamental ionic characteristic features of the ZrO2. As a consequence, several phases

for the ZrO2 can be obtained by structure relaxation with this potential, including the

cubic, octagonal, and monoclinic phases. The tetragonal phase can also be obtained by

introducing additional Born-Mayer repulsive interaction among oxygen ions.16 However, with

the Coulomb and Born-Mayer interactions, it is impossible to obtain a correct order for the
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TABLE I: Parameters for the Coulomb interaction in zirconia.

QZr QO α (Å−1) cut off (Å)

3.8 -1.9 0.3 10.0

energy of different phases, as this potential does not contain the underlying mechanism

for the stability of the tetragonal and monoclinic phases. Many works reveal that the

polarization of the oxygen ion is the physical mechanism driving the c-t phase transition;20–22

i.e., the polarization of the oxygen ion stabilizes the tetragonal phase of ZrO2. The core-shell

model is usually adopted to describe polarizable ions. For the monoclinic phase, some works

proposed that the charge redistribution over these two inequivalent oxygen ions is the key

mechanism to stabilize the monoclinic ZrO2, and a variable charge model is developed to

describe the stability of the monoclinic ZrO2.
24

B. Tersoff potential

In contrast to the core-shell model and the variable charge model, we suggest to describe

zirconia morphologys by the CT potential that combines the Coulomb interaction and the

Tersoff potential. The most significant characteristic of the Tersoff potential is its bond order

property, i.e., the strength of each bond depends on its chemical environment. In particular,

the bond strength depends explicitly on the coordination number of these two atoms forming

this bond. As a result, the energy of each atom is dependent on its coordination. Recalling

that Zr atoms have varying coordination number in different zirconia morphologys, the

Tersoff potential is rather suitable in describing the interaction within zirconia.

The CT potential takes the following form,

Vij =
QiQj

rij
+ V t

ij , (4)

where the first term is the standard Coulomb interaction. Parameters related to the Coulomb

interaction are listed in Tab. I. The summation of the long-range electrostatic interaction

is done by the truncation-based summation approach initially proposed by Wolf et al. in

199929 and further developed by Fennell and Gezelter in 2006.30 We have chosen the damping

parameter α = 0.3 Å−1 and the cut-off rc = 10.0 Å, which have been used in several previous

works.31,32
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The second term in Eq. (4) is the Tersoff potential. This potential was first proposed

by Tersoff in 1986,28 modified in 1988,33 and then generalized to multi-component system

in 1989.34 There are some minor differences in notations of different versions. The present

work uses the following functional form for the Tersoff potential,

V t
ij = fC (rij) [fR (rij) + bijfA (rij)] . (5)

The cut-off function is

fC (r) =























1, r < R

1
2
+ 1

2
cos

(

π r−R
S−R

)

, R < r < S

0, r > S.

(6)

The repulsive and attractive terms are

fR (rij) = Ae−λ1rij ; (7)

fA (rij) = −Be−λ2rij . (8)

It shoud be noted that the repulsive term in the Tersoff potential is exactly the same as the

Born-Mayer potential. Hence, the values for parameters A and λ1 in the Tersoff potential

are set to be the same as that for the Born-Mayer potential, i.e., λ1 = 3.05 Å, and A =

2023.6003eV.

Following the Morse potential,35 parameter λ2 in the attractive term can be set by λ2 =

λ1/2, i.e., λ2 = 1.525 Å. To determine the energy parameter B, we point out the fact that

both Coulomb interaction and the fA term in the Tersoff potential are attractive interactions.

The ionic bond model is most suitable for ionic crystals consisted by the atoms from columns

I and VII in the periodic table. It is because the energy of valence electron in the metallic

atom is much higher than that of the chlorine-like atom, so the valence electron transfer

is nearly complete while the electron coupling is only a small perturbation. Zirconia is

consisted of the transition metal from column II and the oxygen from column VI, both of

which move to the center of the periodic table. The energy difference between the valence

electron of Zr and O atoms is smaller, so the valence electron transfer is slightly weakened.

As a result, the covalent component will increase while the ionicity still dominates, which

will be reflected by the reduction of the ionic charges to the effective charges.36 Indeed,

we find that the charges of the Zr cations and the O ions are slightly reduced from their
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FIG. 3: The dependence of the atomic energy (Vi) on the effective coordination (ζij) from the

Tersoff potential with n = 5.0 and different β. Note that the energy is minimized around ζij = 6

(the actual coordination is 7) for β = 0.24.

normal values to +3.8 and -1.9, which indicates that a small portion of the ionic interaction

is replaced by the covalent interaction. The fitted parameter, B = 17.3376 eV, is about two

orders smaller than the parameter A, which further confirms that the interaction is mostly

ionic.

The characteristic feature of the Tersoff potential is the bond order term

bij =
(

1 + βnζnij
)− 1

2n . (9)

The effective coordination ζij includes the local environment effect through the following

expression

ζij =
∑

k 6=i,j

fc (rik) g (θijk) e
λm
3
(rij−rik)

m

, (10)

where the summation
∑

k is over other bonds i-k around atom i. The coordination for atom

i is in close relation to the quantity ζij, which is regarded as the effective coordination for

atom i. The three-body term is

g (θijk) = 1 +
c2

d2
−

c2

d2 + (h− cos θijk)
2 . (11)

Before presenting parameters for the Tersoff potential, we discuss the suitability of the

Tersoff potential in describing the monoclinic phase by taking advantage of its bond order

characteristic. Let’s consider a simple situation with g(cos θijk) = 1 and λ3 = 0.0 in Eq. (10),
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so the actual coordination for atom i is ζij + 1. Due to this close relationship between the

quantity ζij and the coordination, the quantity ζij is usually called the effective coordination.

The energy minimum position rm is determined by

∂V t
ij

∂r
|r=rm = 0, (12)

which gives

rm =
1

λ1 − λ2

ln

(

Aλ1

bBλ2

)

. (13)

The corresponding energy minimum is

V m
ij = Ae−λ1rm − bBe−λ2rm . (14)

Assuming all bonds around atom i have the same energy, the total energy for atom i can be

obtained

Vi(ζ) = Vm × (ζ + 1) (15)

=
(

Ae−λ1rm − bBe−λ2rm
)

× (ζ + 1) . (16)

The subscripts i and j have been omitted here. Note that the quantity b is also a function

of ζ as can be seen in Eq. (9). For a given value of (n, β), the energy Vi(ζ) is an explicit

function of the effective coordination ζ. Fig. 3 displays the function Vi(ζ), which shows that

the minimum of Vi(ζ) with respective to ζ can be well manipulated by tuning parameters (n,

β). Particularly, the energy Vi(ζ) has its minimum value at ζ = 6 (i.e., actual coordination

of 7) for n=5 and β = 0.24. We thus demonstrate that the bond order characteristic of the

Tersoff potential is able to ensure the monoclinic phase (with sevenfold coordination for Zr)

to be the lowest-energy configuration among all zirconia morphologys. We have thus shown

that the stability of the monoclinic zirconia among different morphologys (with different Zr

coordination) can be well described by the Tersoff potential using its bond order property.

The parameters (n, β) for the Zr atom are primarily determined according to Fig. 3. It

should be noted that in zirconia morphologys with inequivalent bond lengths, these bonds

around an atom will have different energy, so the assumption in Eq. (16) does not hold in

this situation. Consequently, the final parameters (n, β) are slightly deviated from the ideal

values in Fig. 3.
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TABLE II: Parameters for the Tersoff potential of zirconia.

two-body

A (eV) B (eV) λ1 (Å−1) λ2 (Å−1) R (Å) S (Å)

2023.6003 17.3376 3.0500 1.5250 2.85 3.15

three-body for Zr

m λ3 (Å−1) β n c d h

3 0 0.2403 5.0062 0.0 0.0 0.0

three-body for O

m λ3 (Å−1) β n c d h

3 0 0.0601 2.2611 2.0204 0.1093 -0.4112

We emphasize that there are both repulsive and attractive terms in the Tersoff potential.

The repulsive term in the Tersoff potential is exactly the same as the usual Born-Mayer

potential, both of which describe the Pauli repulsion due to the overlap of electron density.

The novelty of the CT potential lies in the bond order dependent attractive term in the

Tersoff potential. The bond order attractive term is of small fraction in the whole CT

potential, but this is the kernel ingredient that provides good descriptions for both tetragonal

and monoclinic morphologys.

Parameters for the Tersoff potential of ZrO2 are listed in Tab. II. Parameters in the three-

body term g(cos θ) are fitted to the correct energy order of different zirconia morphologys.

The Tersoff potential files for GULP37 and LAMMPS38 are available from the personal

website of the corresponding author (jiangjinwu.org).

IV. RESULTS AND DISCUSSIONS

We have developed the CT potential for the zircornia in the above. The rest of this

paper is devoted to applying this CT potential to study some typical properties for different

zirconia morphologys, and compare these results with available experiments or ab initio

calculations.
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TABLE III: Structural properties for the monoclinic ZrO2. The second line lists the lattice con-

stants. β is the tilting angle. Length is in the unit of Å. Angle is in the unit of degree.

exp.6 ab initio9 VCM24 CT, this work

a,b,c 5.145, 5.210, 5.312 5.242, 5.305, 5.410 5.167, 5.157, 5.323 5.4238, 4.9774, 5.3329

β 99.2 99.23 97.2 95.2

Zr 0.2751, 0.0404, 0.2081 0.2765, 0.0421, 0.2090 0.2806, 0.0176, 0.2194 0.2777, 0.0414, 0.2102

OI 0.0770, 0.3351, 0.3437 0.071, 0.337, 0.342 0.0468, 0.2973, 0.3812 0.0755, 0.3275, 0.3960

OII 0.5480, 0.2425, 0.5250 0.550, 0.242, 0.521 0.5303, 0.2470, 0.5163 0.5391, 0.2686, 0.5205

Zr-OI 2.0371, 2.0838, 2.1391 2.0915, 2.1017, 2.1972 2.0533, 2.0974, 2.2620 2.0870, 2.0995, 2.1238

Zr-OII
2.1446, 2.1548, 2.1923, 2.2067, 2.0969, 2.1412, 2.1104, 2.1795,

2.2548,2.2782 2.2919, 2.2963 2.2117, 2.2828 2.3388, 2.3669

TABLE IV: Static properties for zirconia of different phases.

Volume c-t Imaginary Energy barrier Method and

(Å3/molecule) distortion mode (cm−1) (meV/molecule) reference

Vc Vt Vm ∆z ωX−

2

∆Ect ∆Etm

33.1 33.5 35.0 0.033 31.2 74.9 ab initio39

32.9 33.7 35.1 0.06 56.2 62.4 exp.6

34.3 35.9 37.1 0.050 81.1 99.9 ab initio9

32.7 33.1 35.2 0.039 i120 16.2 15.6 VCM24

33.66 33.70 35.84 0.013 i155.8 3.05 80.27 CT, this work

A. Monoclinic phase

The CT potential includes both the long-range Coulomb interaction and the bond order

Tersoff potential. The Tersoff potential has been implemented in most lattice dynamics

or molecule dynamics (MD) simulation packages, like GULP37 and LAMMPS38. In the

present work, the GULP37 package is used to calculate static properties for different zirconia

morphologys, including structural properties, the energy barrier, the phonon dispersion, the

Young’s modulus, and the Poisson’s ratio.

Table III shows that structural properties for the monoclinic zirconia calculated by the
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FIG. 4: Phonon dispersion for cubic ZrO2, calculated with the primitive unit cell of one Zr atom

and two O atoms. An imaginary branch (blue online) exists around the boundary X of the Brillouin

zone. The bottom inset displays the vibrational morphology of the phonon mode at the X point,

i.e., the X−
2 mode.

present CT potential are in good agreement with experiments or ab initio results, which

implies that the CT potential can successfully describe the monoclinic phase. Furthermore,

Tab. IV shows that the monoclinic phase has the lowest energy among all zirconia morphol-

ogys. The value of the energy barrier ∆Etm = 80.27 meV/molecule between the tetragonal

phase and the monoclinic phase is in good agreement with the experiments6 or the ab initio

results.9,39 The volume of the monoclinic zirconia is obviously larger than the cubic and

tetragonal phases, which agrees quite well with previous works. These promising results

confirm that the present CT potential indeed predicts the monoclinic zirconia to be the

most stable phase among different zirconia morphologys.
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~Rt, where ~Rc and ~Rt are structures for the

cubic and tetragonal phases, respectively.

B. Tetrogonal phase

While the success of the CT potential in describing the monoclinic phase is as expected

considering the bond order feature of the Tersoff potential, we point out that the Tersoff

potential does not have any specific features to guarantee the transition of the cubic phase

into the more stable tetragonal phase. However, it is quite interesting that the present

CT potential can also predict such transition. To illustrate this fact, we calculate the

phonon dispersion for the cubic zirconia in Fig. 4. A primitive unit cell containing one

Zr atom and two oxygen atoms is used for this calculation. The phonon dispersion is

calculated with GULP.37 These phonon branches show similar behaviors as results from

ab initio calculations.8,10–12 The most significant feature in the phonon dispersion is the

softening of one optical branch, which eventually becomes imaginary for wave vectors around

the X point in the Brillouin zone. Note a convention that an imaginary value will be shown

as a negative value for the frequency in phonon dispersions like Fig. 4.

The vibratonal morphology corresponding to the imaginary mode at the X point, i.e., X−
2

mode, is shown in the bottom inset of Fig. 4. This figure is plotted with the XCRYSDEN

package.40 The Zr atom does not vibrate, while these eight surrounding oxygen atoms are

divided into two groups. These two groups of oxygen atoms vibrate in an opposite direction.

The cubic phase will be distorted into the tetragonal phase by deformation following the

15



TABLE V: The Young’s modulus (Y, in the unit of GPa) and the Poisson’s ratio (ν) for ZrO2 of

different phases. The Young’s modulus is anisotropic with three different values along the x, y,

and z directions.

c t m

Y ν Y ν Y ν

479.7 0.243

464.5

464.5

382.7

/ 0.234 0.251

0.234 / 0.251

0.305 0.305 /

633.3

392.5

430.1

/ 0.247 0.119

0.399 / 0.280

0.175 0.256 /

vibrational morphology of the X−
2 mode. The X−

2 mode is the origin for the transition of

the cubic zirconia into the tetragonal zirconia.

The imaginary mode at the X point can be attributed to the instantaneous polarization

of the Zr cation or the oxygen ions, which can be described by the core-shell model. Adding

additional Born-Mayer interactions among oxygen ions can also provide a correct prediction

for this imaginary mode. Here, we have provided a third solution for the X−
2 imaginary

mode, i.e., by the bond order Tersoff potential.

To further explore the relationship between the cubic and tetragonal phases, we examine

the evolution of the structure from the cubic phase to the tetragonal phase. We introduce

a parameter η to evolve the structure according to the expression ~Rη = 1−η

2
~Rc +

1+η

2
~Rt,

where ~Rc and ~Rt represent the structure of cubic and tetragonal phases, respectively. The

structure with η = −1 is the cubic phase, while the structure with η = +1 corresponds to

the tetragonal phase. For an arbitrary η, the structure ~Rη is constructed based on the cubic

and tetragonal configurations. Fig. 5 shows the evolution of the energy for the structure by

varying η. The cubic phase locates at a local maximum energy position, while the tetragonal

phase is at a local minimum energy position. As a result, the cubic phase is unstable and

will transform into the tetragonal phase.

C. Static and mechanical properties

Structural and energy properties for zirconia morphologys are listed in Tab. III. The

magnitude for the frequency of the X−
2 mode is comparable with previous calculations,

which again verifies the instability of the cubic phase. The quantity ∆z as displayed in
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TABLE VI: Properties for the octagonal ZrO2 predicted by the CT potential in this work.

a, b, c Zr-O bond Volume Energy barrier EO − EM Young’s modulus Poisson’s

(Å) (Å) (Å/molecule) meV/molecule (GPa) ratio

5.339

5.010

5.584

2.1225 37.3 680.54

306.9

209.9

364.0

/ 0.360 0.249

0.526 / 0.526

0.210 0.300 /

Fig. 1 quantifies the magnitude of the c-t distortion. The ∆z from the present work is

smaller than previous works,6,9,24,39 which indicates that the c-t distortion is underestimated

by the present CT potential. Due to the same reason, the energy barrier ∆Ect between

the cubic and tetragonal phases is underestimated by the present CT potential. These

results illustrate that the present CT potential can only provide a qualitative description for

the distortion of the cubic phase into the tetragonal phase. The actual magnitude for the

distortion is underestimated within the CT potential.

The Young’s modulus and the Poisson’s ratio for different zirconia morphologys are com-

pared in Tab. V. We apply the present CT potential to predict properties for the octagonal

zirconia in Tab. VI. The energy of the octagonal zirconia is much higher than other zirconia

morphologys, so the octagonal phase is quite unstable. This is consistent with the fact that

the octagonal is never observed in the experiment.1

D. Dynamic properties

We now apply the CT potential for fMD simulations. MD simulations are performed

using the publicly available simulation code LAMMPS.38 The OVITO package is used for

visualization of the MD snap shots.41 The standard Newton equations of motion are inte-

grated in time using the velocity Verlet algorithm with a time step of 1.0 fs. The structure

has 2 × 2 × 2 symmetric unit cells. A larger structure of 4 × 4 × 4 symmetric unit cells

has also been simulated and similar results are obtained. Periodic boundary conditions are

apllied in all of the three directions in the present MD simulations.

We simulate the heating process of the monoclinic zircornia. The evolution of the volume

is plotted in Fig. 6 (a) during this process. It shows a abrupt reduction in the volume around

747 K, which indicates possible m-t phase transition considering the smaller volume of the
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FIG. 6: Phase transition for the monoclinic ZrO2 by increasing temperature. (a) The temperature

dependence for the volume of ZrO2. (b) The temperature dependence for the Zr coordination.

Note an obvious phase transition around 747 K.

tetragonal phase. Fig. 6 (b) shows that the Zr coordination increases from seven to eight

after this phase transition, which further confirms the transition from the monoclinic phase

(with sevenfold Zr coordination) into the tetragonal phase (with eightfold Zr coordination).

Note that the decrease of the coordination in the high temperature range is due to the strong

thermal vibration at high temperatures, where some neighboring oxygen atoms vibrate into

a distance far from the Zr atom.

To explore more details of the structural transition, we show in Fig. 7 the atomic dis-

placement caused by the phase transition. Note that the colorbar is with respective to the

coordination number of each atom. It clearly displays the structure transition from the

monoclinic phase into the tetragonal phase. The arrow on each atom represents its dis-

placement induced by the phase transition. The oxygens OI with threefold coordination
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FIG. 7: MD snapshots for the ZrO2 just before and after the phase transition around 747 K. The

arrow attached to each atom describes the atomic displacement induced by the phase transition.

The colorbar is with respective to the coordination.

are seriously reconstructed by large displacements and are eventually deformed into fourfold

coordination.

It should be noted that the critical temperature for the m-t transition predicted by

the present CT potential is lower than the experimental value.1 Furthermore, there is no

obvious t-c phase transition at higher temperatures, which shall occurs around 2377 K in the

experiment.1 It is because the c-t distortion is underestimated by the present CT potential,

so the c-t distortion can not take effect at the high temperature.

V. CONCLUSION REMARKS

Before conclusion, we address some general remarks on positive and negative properties

of the present CT potential, to facilitate readers to decide whether the CT potential is

suitable for their researches. The most significant feature of the CT potential is to use the

bond order Tersoff potential to substitute the core-shell model. Both positive and negative

properties of the CT potential are directly resultant from this substitution. We list these

positive and negative properties as follows.

Positive properties. (1) The capability of the CT potential in describing the monoclinic

phase is mainly owing to the bond order characteristic of the Tersoff potential, so the CT
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potential possesses a clear physical essence. (2) The CT potential predicts correct energy

order for these four zircornia morphologys, with the monoclinic phase as the lowest-energy

structure. (3) A clear m-t phase transition is observed in the MD simulation. (4) The CT

potential is at least one order faster than the core-shell model in the MD simulation. It is

because, to mimic an addibatic response of the shells to the cores, shells practically have

very small mass and thus require ultra-small time step in MD simulations. (5) The Tersoff

potential has been widely used in the computational community and has been implemented

in most simulation packages, so the CT potential can be conveniently used.

Negative properties. (1) The magnitude of the c-t distortion is weaker than the experi-

ment, and as a consequence the t-c phase transition is not observed in the MD simulation.

(2) The polarization effect is treated effectively by the Tersoff potential without introduc-

ing shells, so the effect from the electric field on the polarization of the shells can not be

simulated by the CT potential.

To summary, we have developed a potential by combining the Coulomb interaction and

the Tersoff potential to describe the atomic interaction for zirconia. The bond order property

of the Tersoff potential enables this potential to be very suitable in describing these well-

known zirconia morphologys. More specifically, within this potential, the monoclinic zirconia

is the most stable phase in the low temperature region. The cubic phase is not stable and will

be spontaneously distorted into the tetragonal phase. The octagonal phase has the highest

energy and shall not be observed in the experiment. These predictions agree quite well with

the experiments or ab initio calculations. We also use this potential to predict various static

or dynamic properties for the zirconia morphologys. The potential scripts for GULP and

LAMMPS are available from the website of the corresponding author (jiangjinwu.org).
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